§62. Система базисных уравнений

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 

Таким образом, если количество базисных товаров будет равно j, полученная система будет состоять из j уравнений: они могут быть охарактеризованы как базисные уравнения.

Предполагая, что базисные товары это a, b, …, j, будем обозначать чистые количества, в которых они появляются в базисных уравнениях, буквами с чертой наверху: А~, В~ ,…, J~, чтобы отличать их от количеств в первоначальных процессах. Поэтому базисные уравнения будут следующими:

(A~1pa + B~1pb +…+ J~1pj)(l + r)+L~1w = A~(1)pa+B~(1)pb + … + J~(1)pj

(A~2pa + B~2pb +…+ J~2pj)(l + r)+L~2w = A~(2)pa+B~(2)pb + … + J~(2)pj

…......................................................

(A~jpa + B~jpb +…+ J~jpj)(l + r)+L~jw = A~(j)pa+B~(j)pb + … + J~(j)pj

Эта система эквивалентна первоначальной, ввиду того что определяемые ею значения R и цен будут обязательно являться решениями первоначальной системы.

Однако она отличается от первоначальной системы не только исключением небазисных товаров, но и в двух других отношениях. Во-первых, базисные уравнения в общем не представляют производственных процессов. Во-вторых, они могут содержать отрицательные количества, так же как и положительные.